Direct Analysis of Intact Proteins from Escherichia coli Colonies by Liquid Extraction Surface Analysis Mass Spectrometry

Randall EC, Bunch J, Cooper HJ; Anal Chem. 2014 Nov 4;86(21):10504-10. doi: 10.1021/ac503349d. Epub 2014 Oct 23

Top-down identification of proteins by liquid extraction surface analysis (LESA) mass spectrometry has previously been reported for tissue sections and dried blood spot samples. Here, we present a modified “contact” LESA method for top-down analysis of proteins directly from living bacterial colonies grown in Petri dishes,without any sample pretreatment. It was possible to identify a number of proteins by use of collision-induced dissociation tandem mass spectrometry followed by searches of the data against an E. coli protein database. The proteins identified suggest that the method may provide insight into the bacterial response to environmental conditions. Moreover, the results show that the “contact” LESA approach results in a smaller sampling area than typical LESA, which may have implications for spatial profiling.

Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

Martin NJ, Griffiths RL, Edwards RL, Cooper HJ. J Am Soc Mass Spectrom. 2015 May 20. [Epub ahead of print]

Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The ‘contact’ LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

Quantitative spatial analysis of the mouse brain lipidome by pressurized liquid extraction surface analysis (PLESA)

Reinaldo Almeida, Zane Berzina, Eva C. Arnspang, Jan Baumgart, Johannes Vogt, Robert Nitsch, and Christer S. Ejsing

Anal. Chem., Just Accepted Manuscript
DOI: 10.1021/ac503627z
Publication Date (Web): December 30, 2014
Copyright © 2014 American Chemical Society

 

Here we describe a novel surface sampling technique termed pressurized liquid extraction surface analysis (PLESA), which in combination with a dedicated high resolution shotgun lipidomics routine enables both quantification and in-depth structural characterization of molecular lipid species extracted directly from tissue sections.

University of Birmingham, Cooper Mass Spectrometry Group

What is the focus of your lab’s research?

Our research focuses on in situ analysis of intact proteins from biological substrates. We combine ambient surface techniques and ion mobility spectrometry with high resolution mass spectrometry.

We are particularly interested in native ambient mass spectrometry, in which folded proteins, protein assemblies and protein complexes are sampled directly from thin tissue sections. Native ambient mass spectrometry, such as liquid extraction surface analysis (LESA), is integrated with mass spectrometry imaging to provide simultaneous spatial and structural information.

We also apply LESA for the analysis of intact but unfolded proteins from a range of substrates including living microbial colonies growing on agar and other solid substrates, dried blood spots and tissue sections. The combination of LESA, ion mobility spectrometry and mass spectrometry enables the detection of hundreds of proteins.

Why did you incorporate the TriVersa NanoMate® into your laboratory

Initially, we purchased the TriVersa NanoMate® for direct infusion and coupling to LC and we still use the equipment for that purpose. Advion Interchim Scientific’s chip technology has revolutionized nanospray as far as ease of use. The ESI Chip is robust and bypasses any problems with non-uniformity. It allows us to move simply to the next nozzle if there is an issue with spray. The spray sensing capability is very clever and necessary for our overnight runs. More recently, we have used the LESA capability of the TriVersa NanoMate® for our in situ analyses of proteins in tissue, dried blood spots and microbial colonies.

To whom would you recommend the TriVersa NanoMate® for their research?

I would recommend the TriVersa NanoMate® to anyone with a mass spectrometer who uses nanoelectrospray.

Do you have any publications or presentations using the TriVersa NanoMate®?

Publication Highlight

Liquid Extraction Surface Analysis Mass Spectrometry of ESKAPE Pathogens

Havlikova et al. J Am Soc Mass Spec. 2021

Top-down LESA MS/MS was used for protein identification in four ESKAPE pathogens as well as E. faecalis V583 and a clinical isolate of A. baumannii.

Other Publications:
  • Hale et al. Native mass spectrometry imaging and in situ top-down identification of intact proteins directly from tissue. J Am Soc Mass Spec. DOI: 10.1021/jasms.0c00226
  • Havlikova et al. Direct identification of bacterial and human proteins from infected wounds in living 3D skin models. Sci Rep. DOI: 10.1038/s41598-020-68233-6
  • Haque et al. Self-incompatibility triggers irreversible oxidative modification of proteins in incompatible pollen. Plant Physiology. DOI: 10.1104/pp.20.00066
  • Sisley et al. LESA cyclic ion mobility mass spectrometry of intact proteins from thin tissue sections. Anal. Chem. DOI: 10.1021/acs.analchem.9b05169
  • Hale et al. Native LESA TWIMS-MSI: Spatial, conformational, and mass analysis of proteins and protein complexes. J Am Soc Mass Spec. DOI: 10.1021/jasms.9b00122
  • Kocurek et al. Electroporation and mass spectrometry: A new paradigm for in situ analysis of intact proteins from living yeast colonies. Analytical Chemistry/ DOI: 10.1021/acs.analchem.9b04365
  • Griffiths et al. Comprehensive LESA mass spectrometry imaging of intact proteins by integration of cylindrical FAIMS. Analytical Chemistry. DOI: 10.1021/acs.analchem.9b05124
  • Havlikova et al. Quantitative imaging of proteins in tissue by stable isotope labeled mimetic liquid extraction surface analysis mass spectrometry. Analytical Chemistry. DOI: 10.1021/acs.analchem.9b04148
  • Griffiths et al. LESA MS imaging of heat-preserved and frozen tissue: Benefit of multistep static FAIMS. Analytical Chemistry. DOI: 10.1021/acs.analchem.8b02739
  • Rosting et al. High field asymmetric waveform ion mobility spectrometry in nontargeted bottom-up proteomics of dried blood spots. J Proteom Res. DOI: 10.1021/acs.jproteome.7b00746
  • Sarsby et al. Liquid extraction surface analysis mass spectrometry coupled with field asymmetric waveform ion mobility spectrometry for analysis of intact proteins from biological substrates. Analytical Chemistry. DOI: 10.1021/acs.analchem.5b01151
  • Griffiths et al. Liquid extraction surface analysis field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of dried blood spots. Analyst. DOI: 10.1039/C5AN00933B
  • Sarsby et al. Top-down and bottom-up identification of proteins by liquid extraction surface analysis mass spectrometry of healthy and diseased human liver tissue. J Am Soc Mass Spec. DOI:10.1007/s13361-014-0967-z
  • Randall et al. Direct analysis of intact proteins from Escherichia coli colonies by liquid extraction surface analysis mass spectrometry. Analytical Chemistry. DOI: 10.1021/ac503349d
  • Edwards et al. Compound heterozygotes and beta‐thalassemia: Top‐down mass spectrometry for detection of hemoglobinopathies. PROTEOMICS. DOI: 10.1002/pmic.201300316
  • Martin et al. Dried blood spot proteomics: Surface extraction of endogenous proteins coupled with automated sample preparation and mass spectrometry. J Am Soc Mass Spec. DOI: 10.1007/s13361-013-0658-1
  • Edwards et al. Hemoglobin variant analysis via direct surface sampling of dried blood spots coupled with high-resolution mass spectrometry. Analytical Chemistry. DOI: 10.1021/ac1030804