Publication

Butyl-Based Reversed-Phase High-Performance Liquid Chromatography and Silica Normal-Phase High-Performance Thin-Layer Chromatography Methods for the Determination of Palonosetron in the Presence of Degradation Products and Dosage Form Additives

 

National Organization for Drug Control and Research, Cairo University

Abstract

Stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) and normal-phase high-performance thin-layer chromatography (NP-HPTLC) methods have been developed for the determination of palonosetron which is a potent antiemetic drug used with chemotherapy. Forced degradation studies were performed on palonosetron to study its stability behavior. The drug was subjected to acid, base, neutral hydrolysis, oxidation, thermal and photolytic conditions. Mass analysis has been performed to elucidate the oxidative degradants by Advion compact mass spectrometer. HPLC separation was achieved on PerfectChrom 100 C4 (250 × 4.6 mm, 5 μm particle size) column using buffer (20 mM dipotassium hydrogen orthophosphate, adjusted with phosphoric acid to pH 2.5):acetonitrile:methanol (60:30:10, v/v) as the mobile phase with isocratic mode at a flow rate of 1 mL/min using photodiode array detector (PAD) at 210 nm. The method showed adequate sensitivity concerning linearity, accuracy and precision over the range of 0.1–10 μg/mL. Limit of detection (LOD) and limit of quantification (LOQ) were determined to be 0.03 μg/mL and 0.09 μg/mL, respectively. HPTLC separation was carried out on aluminum plates pre-coated with silica gel 60 F254 using methanol:ammonia (10:0.5, v/v) as the mobile phase. CAMAG scanner was operated at 254 nm for the densitometric measurement in the absorbance mode. A polynomial relationship was constructed in concentration range of 0.1–2 μg/band, with LOD and LOQ 0.02 μg/band and 0.06 μg/band, respectively. The cited chromatographic methods were successfully applied to the determination of palonosetron in the presence of its degradation products and additives in the commercially available vials. Method validation was performed as per the ICH guidelines confirming methods robustness to be used in quality control laboratories. Statistical comparisons have been performed between the results of the cited chromatographic methods and those of the official one using Student’s ttest and F test values at 95% confidence interval level, revealing good accuracy and precision.