

Isomeric Complexity of Glycosylation in MCF-7 and MDA-MB-231 Cell Lines Revealed by Detailed Analysis with Ion Trap Mass Spectrometry David J. Ashline^{1,2}, Hailong Zhang², Vernon N. Reinhold² ¹Glycan Connections, LLC Lee, NH; ²University of New Hampshire, Durham, NH;

Introduction

Glycosylation is a ubiquitous post-translational modification of proteins and lipids. Glycans function as important ligands in intercellular and intermolecular interaction. The template-free biosynthesis of oligosaccharides frequently results in multiple isomeric glycoforms. Examination of two well studied cell lines shows the ubiquity and complexity of this problem. While localizing fucose to a core GlcNAc or antenna is important determining the specific antennal structure, ie Lewis X or H2, is also an important detail Comparison of sample spectra with known standards, along with *de novo* analysis, enables assignment of these differences, including common instances of isomeric mixtures.

Methods

Cultured MCF-7 and MDA-MB-231 cell lines were processed to yield pools of glycosphingolipids, Nglycoprotein glycans, and O-linked linked glycoprotein glycans. Intact glycosphingolipids were isolated by solvent extraction and purified by solid-phase extraction, followed by permethylation using sodium hydroxide and iodomethane. Nlinked glycans were released enzymatically, purified by graphitized carbon solid phase extraction, reduced with borane/ammonia, and permethylated. O-linked glycans were released by reductive beta-elimination, purified by cation exchange and C18 solid phase extraction, and permethylated.

Permethylated oligosaccharides were directly infused into an ion-trap mass spectrometer (LTQ, Thermo Scientific, San Jose, CA) via nanoelectrospray (Triversa Nanomate, Advion, Ithaca, NY). MSⁿ peak selection was performed manually. Standard materials either obtained were commercially or from the Consortium for Functional Glycomics. Materials were permethylated and disassembled via MSⁿ.

Relevant epitope fragment spectra were compared visually and computationally to generate similarity scores.

References

<u>Ashline DJ¹, Zhang H¹, Reinhold VN². Isomeric complexity of</u> glycosylation documented by MSn. Anal Bioanal Chem. 2017 Jan;409(2):439-451.

Ashline DJ¹, Hanneman AJ, Zhang H, Reinhold VN. Structural documentation of glycan epitopes: sequential mass spectrometry and spectral matching. J Am Soc Mass Spectrom. 2014 Mar;25(3):444-53.

both structures.

Results

Glycosphingolipids can also contain isomeric mixtures. The tetraosylceramides in neolactotetraosylceramide. Isolation of the terminal LacNAc (m/z 486) clearly shows both HexNAc-Hex and Hex-HexNAc motifs. Further, the Hex-HexNAc was 4-linked. The putative Gal-Gal motif (m/z 431) was also empirically determined to be 4-linked, distinguishing this structure from an isoglobo structure.